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g
Just to warm up... )

‘Climate change has been called the
crisis of our time,... and it is.’

Changes in Hydrological Extremes: Advances in climate-induced extremes
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1. Overview & rationale of the research

Extreme rainfall and #%
droughts in a
changing climate

These extreme hydrological events have
increased globally — but not at the
same pace

wslworld-asia-54615756
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1. Overview & rationale of the research

Motivation of the
research

Extreme hydrological events in small
areas (e.g. small islands) are

often poorly understood or not well
reproduced by climate models (e.qg.
General Circulation Models, GCMs)
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1. Overview & rationale of the research

Trend analysis

Drought

Small island
hydrology

Keywords

@

North Atlantic
Oscillation

Extreme rainfall

Teleconnection



1. Overview & rationale of the research

The logic of the research

; ‘. * ‘ .

2017 2021
. Climate :
Data Rainfall trends o Droughts Extreme rainfall
preparation & regionalisation
gap-filling
Teleconnection Teleconnection Teleconnection
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1.

11

Overview & rationale of the research

Primary data used for the analyses

Var. = 42.6% EQF1 SLP DJFM 1899-2018

B Rain gauge

BEEEN
0 400 800 1800m.a.s.l.
Daily rainfall Modes of climate variability
Data from October 1936 to Different definitions of
September 2017 (80 hydrological the North Atlantic
years) at 41 raingauges in Oscillation (e.g. daily
Madeira Island NAO index)
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1. Overview & rationale of the research

Main models used

1 ’. * ‘ .

Data Rainfall trends Climate Droughts Extreme rainfall

preparation regionalisation

- Multivariate - Mann-Kendall - Principal - Standardized - Extremogram
imputation by (MK) test components Precipitation - Cross-
chained - Sen’s slope analysis (PCA) index (SPI) extremogram
equations (MICE) estimator - Principal factor - Kernel - Bivariate copulas
for gap-filling - Sequential Mann- analysis (PFA) occurrence rate

- Synthetic missing Kendall (SQMK) estimator (KORE)
data generation test - Bivariate copulas

for validation
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North Atlantic Oscillation (NAO)
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North Atlantic Oscillation (NAO)



2
Major findings of
the research



2.1
Filling of the missing rainfall data

“The problem of missing values, as those of
rainfall, is relatively common in almost all
research related to hydrology.”

Espinosa, L.A., Portela, M. M., & Rodrigues, R. (2021). Rainfall trends over a North Atlantic small sisland in the period 1937/1938-2016/2017 and an early climate
teleconnection. Theoretical and Applied Climatology, 144(1), 469-491; https://doi.org/10.1007/s00704-021-03547-7
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https://doi.org/10.1007/s00704-021-03547-7

2.1 Filling of the missing rainfall data

Characterisation of the missing daily rainfalls
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2.1 Filling of the missing rainfall data

Multivariate imputation MICE main steps

Incomplete dataset Imputed data Analysis results Pooled results

—
} x29200 X 41

80 years x 365 days* = 29200 days (rows)

41 raingauges (columns)

*no leap days considered
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2.1 Filling of the missing rainfall data

Monthly rainfall aggregated from
observed and imputed daily data (mm)
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2.1 Filling of the missing rainfall data

29,200x41]

of complete daily rainfalls was achieved and validated
from October 1936 to September 2017

19



P
Rainfall trends

“There is considerably and statistically significant
decreases, exacerbated in recent years, at the
central region of the island which is one of the
most important locations in terms of fresh water

security.”

Espinosa, L.A., & Portela, M.M. (2020a). Rainfall Trends over a Small Island Teleconnected to the North Atlantic Oscillation - the Case of Madeira Island, Portugal. Water
Resources Management 34, 4449-4467; https://doi.org/10.1007/s11269-020-02668-4

Espinosa, L.A., Portela, M. M., & Rodrigues, R. (2021). Rainfall trends over a North Atlantic small sisland in the period 1937/1938-2016/2017 and an early climate
teleconnection. Theoretical and Applied Climatology, 144(1), 469-491; https://doi.org/10.1007/s00704-021-03547-7
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2.2 Rainfall.trends

Spatial distribution of trends (1937-2017)

IDW applied to the Sen’s slope estimates, Q

Rainfall trend (mm/year)
< decrease I BB increase >
<8 -7-6 -5-4-3-2-101 2 =3

P> January (JAN) P> Second quarter, January-March (QT2)

3615000 3625000 3635000

_ T — T
Qi = e
=1,2,..N.j>Fk . . ' o am ‘
P> Hydrological year, October-September (HDY)
Qxn ,if N is odd ‘
Q=q A
%(Q% +Q%f_2),ifNiseven \g’

3615000 3625000 3635000

290000 300000 310000 320000 330000 340000 290000 300000 310000 320000 330000 340000
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2.2 Rainfall.trends

NAOI and rainfall trends (1937-2017)

Seasonal NAOI (JEM) - QT2 (Jan-Mar) rainfall Seasonal North Atlantic Oscillation Index (Station-Based)
Sccond quarter (January-March)
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2.5
Climate regionalisation

“The regionalisation enabled a dimensionality
reduction to three relatively manageable regions
of Madeira Island.”

Espinosa, L.A., Portela, M. M., & Rodrigues, R. (2019). Spatio-temporal variability of droughts over past 80 years in Madeira Island. Journal of Hydrology: Regional Studies,
Volume 25, 2019, 100623, ISSN 2214-5818; https://doi.org/10.1016/j.ejrh.2019.100623

Espinosa, L.A., Portela, M.M.; Pontes Filho, J.D., Studart, T.M.C., Santos, J.F., & Rodrigues, R. (2019). Jointly Modeling Drought Characteristics with Smoothed Regionalized
SPI Series for a Small Island. Water 2019, 11, 2489; https://doi.org/10.3390/w11122489

Espinosa, L.A., Portela, M.M., & Rodrigues, R. (2020b). Significant Extremal Dependence of a Daily North Atlantic Oscillation Index (NAQI) and Weighted Regionalised Rainfall
in a Small Island Using the Extremogram. Water 2020, 12(11), 2989; https://doi.org/10.3390/w12112989
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2.3 Climate regionalisation

Climate regions were identified based on:

Standardized
Precipitation Index Daily rainfall data
(SPI)

24



2.3 Climate regionalisation

Optimal interpretation of PCA loadings
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2.3 Climate regionalisation

Three identified homogeneous regions
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drought analysis to extreme rainfall
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regionalised SPI series rain gauges
(factor scores) (eigen values)
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2.4
Drought analysis

“There is strong evidence suggesting that the

island, especially its central part, is currently in

the midst of the worst drought ever registered
which started around the year 2010-2011.”

Espinosa, L.A., Portela, M. M., & Rodrigues, R. (2019). Spatio-temporal variability of droughts over past 80 years in Madeira Island. Journal of Hydrology: Regional Studies,
Volume 25, 2019, 100623, ISSN 2214-5818; https://doi.org/10.1016/j.ejrh.2019.100623

Espinosa, L.A., Portela, M.M.; Pontes Filho, J.D., Studart, T.M.C., Santos, J.F., & Rodrigues, R. (2019). Jaintly Modeling Drought Characteristics with Smoothed Regionalized
SPI Series for a Small Island. Water 2019, 11, 2489; https://doi.org/10.3390/w11122489
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2.4 Drought analysis

Standardized Precipitation Index (SPI) & drought

DROUGHT PROPERTIES 3
Drought magnitude

3 .
Drough]t) tliuratlon, Dm= -XSPI

o, 3 N Drought threshold, u /-
~ : .
Drought maximum / :

intensity, Dmi ———° Drought events Time (month)

SPI is the most commonly used indicator worldwide for detecting and
characterising meteorological droughts

For any given region, increasingly severe rainfall deficits are indicated as SPI
decreases (negative SPI)

E.g. 6-month SPI (SP16) may be associated with anomalous streamflows and
reservoir levels
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2.4 Drought analysis

Time-dependent occurrence drought rates (KORE)

RGI1 - Northern slope RG2 - Southern slope RG3 - Central region
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2.4 Drought analysis

Affected regions by droughts (1937-2017)
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2.4 Drought analysis

Drought duration, Dd, and magnitude, Dm, & copulas
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2.4 Drought analysis

Bivariate observations & return periods (1937-2017)
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2.5
Analysis of extreme rainfall

“This suggests that previous negative NAO is
the main trigger of the winter extreme daily
rainfall, and that contains information regarding
the antecedent atmospheric conditions in
Madeira.”

Espinosa, L.A., Portela, M.M., & Rodrigues, R. (2020b). Significant Extremal Dependence of a Daily North Atlantic Oscillation Index (NAQI) and Weighted Regionalised Rainfall
in a Small Island Using the Extremogram. Water 2020, 12(11), 2989; https://doi.org/10.3390/w12112989

Espinosa, L.A., Portela, M. M., Pontes Filho, J. D., & Zelenakova, M. (2021). Bivariate Modelling of a Telecdnnection Index and Extreme Rainfall in a Small North Atlantic Island.
Climate, 9(5), 86 ; https://doi.org/10.3390/cli9050086
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2.5 Analysis of extreme rainfall

Extremal dependence of NAO and rainfall (1948-2017)
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2.5 Analysis of extreme rainfall

~Negative & +positive NAOI dominance periods*

200 £

400

600 - — E—— — I | E—— SRR
01/Jan/1948 01/Jan/1980 01/Jan/2000  01/Jan/2012

*The lower and upper tails’ daily NAOI (blue and red triangles, respectively) fitted into a LOWESS curve (vertical blue/red bars).
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2.5 Analysis of extreme rainfall

The bivariate NAOI-extreme rainfall problem
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2.5 Analysis of extreme rainfall

Cross-extremograms of NAOI-rainfall

NAOI upper tail & Rainfall upper tail
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2.5 Analysis of extreme rainfall

Extremal
dependence links

+NAOI dominance has a weak effect on
extreme rainfall events

-NAOI dominance has a strong effect on
extreme rainfall with wetter conditions
and higher extreme rainfall events
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2.5 Analysis of extreme rainfall

Connecting the
dots...

The extremal dependence study
(Espinosa et al., 2020b) focuses on
short term climatic fluctuations in the e
NAO and claiming the existence of gge
o0
®

Modelling the NAOI-extreme rainfall problem

3,630,000

systematic evidence of statistical
dependence over Madeira between
exceptionally daily negative NAO and
rainfall which is stronger in sustained
—NAOI year long periods

o
S
<
=
a
o
o
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2.5 Analysis of extreme rainfall

The winter (DJF) extreme daily rainfalls (1967-2017)
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2.5 Analysis of extreme rainfall

Example of the (non) filtered daily NAOI series prior
to the 20 February 2010 flash floods/debris
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2.5 Analysis of extreme rainfall

Normalised contour plots of the bivariate copulas

Copula Mathematical
family formulation
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Student’s ¢ Tpo(Ty (), T, (v) ]
Clayton (W +v?—1)7% o

o
=
_p1 !es“—l!!es"—ll] £ =24 1
Frank 6~ log [1+ (e®—1) E 3 Survival Gumbel ||
. 1
Gumbel  exp{ — [(~Inu) O 4+ (~Inv)?)% } % ' ' ' ' T ' ' ' ' ' ' ' ' ‘
~ 3 PDN | PP-W -
[ X
=2 25 1
North  Ponta Delgada (PD-N) E |
E 1
South  Funchal Obervatorio (FO-S) “
East Santa Catarina (SC-E) -1-
West  Ponta do Pargo (PP-W) -2 i ] ]
3 Gumbel | Gaussian ||

Centre Bica da Cana (BC-C) T ‘ \ T T T T | T T \ 1 o \ T | i T I
Pico do Areeiro (AR-C) -3 020 - 0 1 2 33 -2 - 0 1 2 33 -2 -l 0 1 2 3

Normalised previous NAOIL, U




2.5 Analysis of extreme rainfall

How “EXTREME”
were the extremes?

With the hypothesis that the NAO can
explain extreme rainfall, and
assuming that the phenomenon has a
multivariate nature, the return periods
of the bivariate problem were
computed as joint return periods
using the constructed copulas ( ):

E(L) E(L)

Tnrg&rN =

P(NI > ni,RN >rn) 1— Fyi(ni) — Fry(rn) + C(Fxr(ni), Frn(rn))

44 5 y iff



2.5 Analysis of extreme rainfall

Joint return periods NAOI-Extreme rainfall (1967-2017)

Extreme rainfall (mm)
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Challenges and developments

1. The remarkable identified bivariate 2. It is essential to study variability of
events of winter 2009/2010 and rainfall at shorter (longer) time scales
2010/2011 (some of the most intense along with atmospheric observations
events ever recorded) further from a multivariate perspective.
emphasise the challenges for climate This in turn may help to understand the
variability assessment for the small atmospheric physics and the
island of Madeira. mechanisms that can shift the current

hydrological conditions into extreme
rainfalls or even droughts.
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4
Summary

The coupling of the results from the research with other published studies over the past
Sixty years provides evidences that in Madeira Island:

(1) seasonal and annual rainfall has shown a gradual decrease since the late 1960's with the
uncertainty regarding to whether rainfall will continue to decrease or it will counterbalance
the already experienced rainfall deficits;

(2) the variability of seasonal and annual rainfall is highly correlated with the large scale
atmospheric circulation pattern of NAO;

(3) droughts in the island have become worse (higher magnitude and longer duration in
recent years); and that

(4) extreme rainfall is clearly intensified by the persistent changes in the NAO mainly during
negative NAO phases (recently more recurrent and “extreme”)
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5
Further developments

Different aspects related to both the effects of climate change and abrupt climate variability on
droughts and rainfall have been comprehensively addressed. However, some of those aspects
can be studied from other perspectives. Also, new aspects and challenges could be raised for the

small island environments, in general, and for Madeira Island, specifically. Further research could
include:

« assignment of uncertainties to the detected trends;

evaluation of uncertainties of the return periods of the analysed hydrological extremes;

attribution research of extreme rainfall events i.e., signal identification of the human influence in
general indicators of climate change (e.g. increasing global mean temperature); and

improved downscaling of Global Circulation Model outputs aiming at a refinement, or even at a
gap-filling, of ground-based rainfall data at shorter time-scales (e.g. daily, hourly)
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